MATH 2050 - Monotone and inverse functions
(Reference: Bartle §5.6)

Q: Consider a function $f:[a, b] \longrightarrow \mathbb{R}$, what kind of "discontinuity" can appear?

Some examples of discontinuous functions

"jump discontinuity"

"everywhere discts"
("densely discrete")

Q: Classification in general seems out of reach. So what about just for some "simpler" functions?

A: Yes, egg. for monotone functions.

Def": Let $f: A \rightarrow \mathbb{R}$. We say that
(i) f is (strictly) increasing if the following holds:

$$
x_{1}, x_{2} \in A \quad \& \quad x_{1} \leqslant x_{2} \quad \Rightarrow \quad f\left(x_{1}\right) \leqslant f\left(x_{1}\right)
$$

(ii) f is (strictly) decreasing if the following holds:

$$
x_{1}, x_{2} \in A \quad \& \quad x_{1} \leqslant x_{2} \quad \Rightarrow \quad f\left(x_{1}\right) \geqslant f\left(x_{1}\right)
$$

(iii) f is (strictly) monotone if it is either (strictly) increasing / decreasing.

Strictly increasing.

GOAL: Monotone functions on [abb] ONLY have "jump discontinuities".
We shall need the notion of "1-sided limits".

Def": Let $f: A \rightarrow \mathbb{R}$ and $c \in \mathbb{R}$ is a cluster point of $A \cap(c, \infty)$.

$$
\begin{array}{lr}
\lim _{x \rightarrow C^{+}} f(x)=L \text { of } & \forall \varepsilon>0, \exists \delta=\delta(\varepsilon)>0 \\
\text { "right-hand limit" } & |f(x)-L|<\varepsilon \text { wherever } x \in A \text { and } \\
& 0<x-c<\delta
\end{array}
$$

Remarks: We can define similarly

$$
\lim _{x \rightarrow C^{-}} f(x)=L
$$

Thu: $\lim _{x \rightarrow c} f(x)=L \Leftrightarrow \lim _{x \rightarrow c^{-}} f(x)=L=\lim _{x \rightarrow c^{+}} f(x)$
Pf: Exercises.

Recall: MCT: $\left(x_{n}\right)$ increasing $\&$ bod above

$$
\Rightarrow \lim _{n \rightarrow \infty}\left(x_{n}\right)=\sup \left\{x_{n} \mid n \in \mathbb{N}\right\} .
$$

Thu: Let $f:[a, b] \rightarrow \mathbb{R}$ be an increasing function.
For any $c \in(a, b)$, we have

$$
\lim _{x \rightarrow c^{-}} f(x)=\sup _{x \in[a, c)} f(x) \quad \& \quad \lim _{x \rightarrow c^{+}} f(x)=\inf _{x \in(c, b]} f(x)
$$

Picture:

Proof: We just show $\lim _{x \rightarrow c^{-}} f(x)=\sup _{x \in[a, c)} f(x)^{\infty}$. exist \because bod a bow by $f(c)$
Let $\varepsilon>0$ be fired but ar bitrang.

$$
\exists x_{\varepsilon} \in[a, c) \text { s.t. } \sup _{x \in(a, c)} f(x)-\varepsilon<f\left(x_{\varepsilon}\right)
$$

Take $\delta:=c-x_{\varepsilon}>0$. Then, $\forall x \in[a, c)$ st $0<c-x<\delta$
we have $x_{\varepsilon}<x<C$, and hence $(\because f$ increasing $)$

$$
\sup _{x \in[a, c)} f(x)-\varepsilon<f\left(x_{\varepsilon}\right) \leq f(x) \leq \sup _{x \in(a, c)} f(x)
$$

Cor: Same assmaption as in Thy THEN:
f cts at $c \in(a, b) \Leftrightarrow \sup _{x \in[a, c)} f(x)=f(c)=\inf _{x \in(c, b]} f(x)$

$$
x \in[a, c) \quad x \in(c, b]
$$

Def": Let $f:[a, b] \rightarrow \mathbb{R}$ be an increasing function d $C \in(a, b)$. Define the jump of f at c to be

$$
j_{f}(c):=\lim _{x \rightarrow c^{+}} f(x)=\lim _{x \rightarrow c^{+}} f(x)
$$

Note: $j_{f}(c) \geqslant 0$ and " $=$ " holds $\Leftrightarrow f$ is cts at c

Thu: Let $f:[a, b] \rightarrow \mathbb{R}$ be an increasing function.
THEN, the set of $C \in[a . b]$ sit f is discontinumers at C is at most countable.

ie. ヨ only at mos countably many jump disconntinenties for a monotone fan.

Proof: Denote the set of disconntinuty
Note:

$$
:=\left\{c \in(a, b) \mid j_{f}(c)>0\right\}
$$

$$
j_{f}(c) \leq f(b)-f(a)
$$

Consicles the subsets

$$
\begin{array}{cc}
D_{1}:=\left\{c \in(a, b) \mid \partial_{f}(c) \geqslant f(b)-f(a)\right\}, & \# D_{1} \leq 1 \\
D_{2}:=\left\{c \in(a, b) \left\lvert\, \partial_{f}(c) \geqslant \frac{f(b)-f(a)\},}{2}\right.,\right. & \# D_{2} \leq 2 \\
\vdots & \vdots \\
D_{k}=\left\{c \in(a, b) \left\lvert\, \partial_{f}(c) \geqslant \frac{f(b)-f(a)}{k}\right.\right\}, & \# D_{k} \leq k
\end{array}
$$

Then. $D=\bigcup_{k=1}^{\infty} D_{k}$ hence is at most countable.
\qquad
Existence of inverse
Consider a cts $f:[a, b] \rightarrow \mathbb{R}$.

$$
\begin{aligned}
m:= & \inf _{x \in[a, b]} f(x) \\
M & =\sup _{x \in[a, b]} f(x)
\end{aligned} \text { are achieved }
$$

combine with IVT, $f([a, b])=[m, M]$
Q: When does the inverse $f^{-1}:[m, M] \rightarrow[a, b]$ exist?

Thu: If $f:[a, b] \rightarrow \mathbb{R}$ is strictly increasing \& cts, then $f^{-1}:[m, M] \rightarrow[a, b]$ exists, and strictly increasing \& cts.
"Sketch of Proof": By EVT and IVT, and f strictly increases.
$f:[a, b] \rightarrow[m, M]$ is $1-1^{\circ}$ and onto. so f^{-1} exists.
Claim: $f^{-1}:[m, M] \rightarrow[a, b]$ is strictly increasing.

Pf: Take any $y_{1}, y_{2} \in[m, m]$ and $y_{1}<y_{2}$.
Suppose $f\left(x_{1}\right)=y_{1}, f\left(x_{2}\right)=y_{2}$.
Note: $\quad x_{1} \neq x_{2}$.
suppose $x_{1}>x_{2}$. Since f is strictly increasing, we have

$$
y_{1}=f\left(x_{1}\right)>f\left(x_{2}\right)=y_{2}
$$

Contribution:
so. $x_{1}<x_{2}$.

Claim: $f^{-1}:[m, M] \rightarrow[a, b]$ is cts
Pf of Claim, Suffices to check $\forall y_{*} \in(m, M)$,

$$
\lim _{y \rightarrow y_{*}^{-}} f^{-1}(y)=\lim _{y \rightarrow y_{k}^{+}} f^{-1}(y)
$$

Suppose NOT, then $\exists y_{*} \in(m, M)$ st $j_{f^{-1}}\left(y_{*}\right)>0$.

$$
\begin{equation*}
\text { ie } a \leq \lim _{y \rightarrow y_{*}^{-}} f^{-1}(y) \ll \lim _{y \rightarrow y_{*}^{+}} f^{-1}(y) \leq b \tag{*}
\end{equation*}
$$

fix some ξ ₹ $f^{-1}\left(y_{*}\right)$
Let $f^{-1}(\tilde{y})=\xi$. Note that $\tilde{y} \neq y_{k}$ by (k).

Case 1: $\tilde{y}<y_{x}$.
f^{-1} strictly increasing $\Rightarrow \xi=f^{-1}(\bar{y})<f^{-1}\left(y_{*}\right)$
But previous the \Rightarrow

$$
\lim _{y \rightarrow y_{*}^{-}} f^{-1}(y)<\xi=f^{-1}(\tilde{y}) \leq \sup _{y \in\left[m, y_{k}\right)} f^{-1}(y)=\lim _{y \rightarrow y_{*}^{-}} f^{-1}(y)
$$

Case 2: $\tilde{y}>y_{*}$ similar!

